
15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-ima… 1/33

Imports

In []: from google.colab import drive
drive.mount('/content/drive/')

In []: !pip install colorblind
import numpy as np
from colorblind import colorblind
import matplotlib.pyplot as plt
from skimage import data
from skimage.util import img_as_ubyte
import cv2
import sys
from skimage import data, io, color
from PIL import Image

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-ima… 2/33

In []: #@title Lib
import numpy as np

from skimage import data, io, color

def rgb_to_lms_lib(img):
 lms_matrix = np.array(
 [[0.3904725 , 0.54990437, 0.00890159],
 [0.07092586, 0.96310739, 0.00135809],
 [0.02314268, 0.12801221, 0.93605194]]
)
 return np.tensordot(img, lms_matrix, axes=([2], [1]))

def lms_to_rgb_lib(img):
 rgb_matrix = np.array(
 [[2.85831110e+00, -1.62870796e+00, -2.48186967e-02],
 [-2.10434776e-01, 1.15841493e+00, 3.20463334e-04],
 [-4.18895045e-02, -1.18154333e-01, 1.06888657e+00]]
)
 return np.tensordot(img, rgb_matrix, axes=([2], [1]))

def simulate_colorblindness_lib(img, colorblind_type):
 #using the RGB-to-LMS matrix, data is transformed into the LMS space.
 lms_img = rgb_to_lms_lib(img)
 #deletion of the information corresponding to one of the cone types
 if colorblind_type.lower() in ['protanopia', 'p', 'pro']:
 sim_matrix = np.array([[0, 0.90822864, 0.008192], [0, 1, 0], [0, 0, 1]], dtype=np.float16)
 elif colorblind_type.lower() in ['deuteranopia', 'd', 'deut']:
 sim_matrix = np.array([[1, 0, 0], [1.10104433, 0, -0.00901975], [0, 0, 1]], dtype=np.float16)
 elif colorblind_type.lower() in ['tritanopia', 't', 'tri']:
 sim_matrix = np.array([[1, 0, 0], [0, 1, 0], [-0.15773032, 1.19465634, 0]], dtype=np.float16)
 else:
 raise ValueError('{} is an unrecognized colorblindness type.'.format(colorblind_type))
 # matrix multiply
 lms_img = np.tensordot(lms_img, sim_matrix, axes=([2], [1]))
 # return back to rgb space with inverse transform.
 rgb_img = lms_to_rgb_lib(lms_img)
 # let's save the image as a colorblind person "should" see it
 io.imsave("asColorBlind.jpg",rgb_img.astype('uint8'))
 return rgb_img.astype(np.uint8)

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-ima… 3/33

def daltonize_correct_lib(img, colorblind_type):
 colorblind_img = simulate_colorblindness_lib(img, colorblind_type=colorblind_type)
 # error matrix is the difference between the original img and the simulated one
 error_matrix = img - colorblind_img
 # let's save this "error" trace
 io.imsave("errorImg.jpg",error_matrix.astype('uint8'))
 # correction with linear trans. to convey info to the colorblind person
 # done by mapping to the other side of the spectrum
 correction_matrix = np.array(
 [[0.0, 0.0, 0.0],
 [0.7, 1.0, 0.0],
 [0.7, 0.0, 1.0]]
)
 # rotates this to a part of the spectrum that they can sees
 corrected_error_matrix = np.tensordot(error_matrix, correction_matrix, axes=([2], [1]))
 # let's save the highlight mask
 io.imsave("correctedErrorImg.jpg",corrected_error_matrix.astype('uint8'))
 # add the correction (highlight mask) to the image
 final = img + corrected_error_matrix
 np.set_printoptions(threshold=sys.maxsize)

 # Steps
 nImages = 7
 plt.figure(figsize=(30, 30))
 plt.subplot(1,nImages,1)
 plt.imshow(img.astype('uint8'))
 for x in range(2,nImages+1):
 img += (corrected_error_matrix / nImages).astype('uint8')
 plt.subplot(1,nImages,x)
 plt.imshow(img.astype('uint8'))

 return final

Daltonizing remarks & methods

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-ima… 4/33

Autore: Lorenzo Foschi

Goals: The primary goal of this notebook is exploring different daltonizing methods, in order to understand the main
concepts behind the treatment of images in the colorblind domain. The notebook is divided in four parts, that
highlight different approaches:

Goal 1: In the first part we use the colorblind library to observe the results and we use the information learned to
make some remarks

Goal 2: In the second part we give a closer look at the modules and we try to solve some problems in the usage of
the library

Goal 3: In the third part we give a look at a different, and improved, daltonizing method. We implement the first part of
the pipeline, obtaining an interesting middle result.

Goal 4: In the fourth part we move to a more abstract domain, looking at some advanced and physiological views of
the daltonizing problem

GOAL 1:

Let's first see what being colorblind really means:

Color vision is achieved through the L, M and S cones in the human retina. These photosensitive receptors are sensitive to the long, middle and short wavelength
ranges of the visible spectrum, respectively. Color blindness is the result of a deficiency of one (or more) of these photoreceptors. There are three typical kinds of
color-blindness: protanopic, deuteranopic, and tritanopic, which correspond to the deficiency of the L cone, M cone, and S cone. These people have problem
perceiving the full spectrum of colors normal people can distinguish.

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-ima… 5/33

Let's comment a brief description of the daltonizing method, exploding it into two separate modules:

def simulate_colorblindness

1) Find the LMS values of the RGB (red-green-blue) image, using some conversion matrix commonly used in the literature. The LMS values correspond to what is
received at the level of the retina. RGB, on the other hand, corresponds to the phosphor levels on a cathode ray tube screen to match the colors, and is used to
define digital images.

2) Make a conversion to delete the information associated with the loss of any of the cone types to get the modified LMS values L'M'S'

3) Make a reverse transformation on the L’M’S’ values to get the R’G’B’ values. R’G’B’ presumably represent how that specific color RGB is perceived by a color
blind person. When this operation is done for all the pixels, the image is converted.

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-ima… 6/33

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-ima… 7/33

def daltonize_correct

1) Generate asColorBlind with simulate_colorblindness

2) Error matrix: the difference between the original img and the simulated one, so the image with R’G’B’ values subtracted from the original image. This represents
the information lost during the transformation. In other words the error picture is what cannot be conveyed to a color blind person.

3) We make a linear transformation on this picture so that it can be conveyed, and add this on the original picture to find the daltonized image. For example, if the
L cone is missing (protanope) the person will have difficulty in seeing the red part of the spectrum. Consequently, in the simulation, the error picture will consist of
red shades mostly. Our transformation maps this information to the blue side of the spectrum. When this is added on the original picture we will get a daltonized
version. The visibility of this image, therefore, is increased for a protanope.

For a normal person, the color space spans over the KBMRGCWY parallelepiped. For a protanope, all the colors which are on QpQ line will appear the same,
which is the intersection color of QpQ and KBWY plane.

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-ima… 8/33

Let's now use the library to obtain different results:

In []: # load image
img0 = cv2.imread("/content/drive/MyDrive/notebookImgs/aaa.jpg")
img0 = img0[..., ::-1]

plt.figure(figsize=(10, 10))

plt.subplot(1,2,1)
plt.imshow(img0.astype('uint8'))

correct using daltonization
daltonized_img0 = colorblind.daltonize_correct(img0, colorblind_type='p')

plt.subplot(1,2,2)
plt.imshow(daltonized_img0.astype('uint8'))

As a protanope... now i see the "16"!

Out[]: <matplotlib.image.AxesImage at 0x7f22718a0130>

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-ima… 9/33

In []: # correct using daltonization
daltonized_img0 = daltonize_correct_lib(img0, colorblind_type='p')

As a protanope... i see the "16" popping up incrementally!

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 10/33

In []: asColorBlind = plt.imread("asColorBlind.jpg")
errorImg = plt.imread("errorImg.jpg")
correctedErrorImg = plt.imread("correctedErrorImg.jpg")
plt.figure(figsize=(30, 30))
plt.subplot(1,4,1)
plt.imshow(img0)
plt.subplot(1,4,2)
plt.imshow(asColorBlind)
plt.subplot(1,4,3)
plt.imshow(errorImg)
plt.subplot(1,4,4)
plt.imshow(correctedErrorImg)

Commented results:
We've used the library, changing the functions a bit in order to obtain middle results, and we've found out how daltonization works. We used an Ishihara table as
input, and that allows me (as a colorblind ^_^) to see the "16" that otherwise i wouldn't see. Right above this text we are printing: the original img, the image seen
as a colorblind person (we'll return to this later on), the error matrix and the corrected matrix

Out[]: <matplotlib.image.AxesImage at 0x7f226d066a30>

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 11/33

"An useful application": Before moving on with the second goal, let's try to use the library to daltonize a scraped
screenshot of a webpage. For this purpose we use Selenium

In []: # install chromium, its driver, and selenium
!apt update
!apt install chromium-chromedriver
!pip install selenium
from selenium import webdriver
options for chrome driver
options = webdriver.ChromeOptions()
options.add_argument('--headless')
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')
wd = webdriver.Chrome(options=options)

let's daltonize unige's homepage
url = "https://en.wikipedia.org/wiki/Ishihara_test"
Opening the website and saving the screenshot
wd.get(url)
wd.save_screenshot("scrapedImg.png")
image = Image.open("scrapedImg.png")
image.show()

daltonizing
web = plt.imread("scrapedImg.png")
Per eliminare il canale 4 png
web = cv2.cvtColor(web, cv2.COLOR_BGRA2BGR)
daltonized_web = daltonize_correct(web, colorblind_type='p')
plt.figure(figsize=(30, 30))
plt.imshow(daltonized_web)

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 12/33

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 13/33

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 14/33

GOAL 2:

Let's now observe some problems in the suggested usage of the library, trying to obtain a better result

At first we try to daltonize the crayons image, observing a clipping in the result. We also plot the RGB channels to see how the result is returned with the touched
channels shifted to [1;512] range. Then we'll try to solve the clipping.

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 15/33

In []: # USAGE OF LIBRARY

load image
img1 = cv2.imread("/content/drive/MyDrive/notebookImgs/crayons.png")
img1 = img1[..., ::-1]

plt.figure(figsize=(10, 10))

plt.subplot(2,1,1)
plt.imshow(img1.astype('uint8'))

correct using daltonization
daltonized_img1 = colorblind.daltonize_correct(img1, colorblind_type='p')

plt.subplot(2,1,2)
plt.imshow(daltonized_img1.astype('uint8'))

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 16/33

Out[]: <matplotlib.image.AxesImage at 0x7f226cee9100>

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 17/33

In []: R = img1[:,:,0]
G = img1[:,:,1]
B = img1[:,:,2]

plt.figure(figsize=(8,3))

plt.subplot(1,3,1)
plt.hist(R.ravel(), density=True, color='r');
plt.ylim([0,0.03])

plt.subplot(1,3,2)
plt.hist(G.ravel(), density=True, color='g');
plt.ylim([0,0.03])

plt.subplot(1,3,3)
plt.ylim([0,0.03])
plt.hist(B.ravel(), density=True, color='b');

plt.tight_layout()

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 18/33

In []: R = daltonized_img1[:,:,0]
G = daltonized_img1[:,:,1]
B = daltonized_img1[:,:,2]

plt.figure(figsize=(8,3))

plt.subplot(1,3,1)
plt.hist(R.ravel(), density=True, color='r');
plt.ylim([0,0.03])

plt.subplot(1,3,2)
plt.hist(G.ravel(), density=True, color='g');
plt.ylim([0,0.03])

plt.subplot(1,3,3)
plt.ylim([0,0.03])
plt.hist(B.ravel(), density=True, color='b');

plt.tight_layout()

Let's give a closer look at how the library is implemented, and let's try to change the typing of the matrices during the whole operation (without converting with
astype(uint8)). Also changing the tensordot operation with the @ operator applied to the transposed right matrix can help

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 19/33

In []: def changeSpaceOld(img, mat):
 return np.tensordot(img, mat, axes=([2], [1]))

def changeSpaceNew(img, mat):
 return img @ mat.T

def rgb_to_lms(img):
 lms_matrix = np.array(
 [[0.3904725 , 0.54990437, 0.00890159],
 [0.07092586, 0.96310739, 0.00135809],
 [0.02314268, 0.12801221, 0.93605194]]
)
 return changeSpaceNew(img, lms_matrix)

def lms_to_rgb(img):
 rgb_matrix = np.array(
 [[2.85831110e+00, -1.62870796e+00, -2.48186967e-02],
 [-2.10434776e-01, 1.15841493e+00, 3.20463334e-04],
 [-4.18895045e-02, -1.18154333e-01, 1.06888657e+00]]
)
 return changeSpaceNew(img, rgb_matrix)

def simulate_colorblindness(img, colorblind_type):
 #using the RGB-to-LMS matrix, data is transformed into the LMS space.
 lms_img = rgb_to_lms(img)
 #deletion of the information corresponding to one of the cone types
 if colorblind_type.lower() in ['protanopia', 'p', 'pro']:
 sim_matrix = np.array([[0, 0.90822864, 0.008192], [0, 1, 0], [0, 0, 1]], dtype=np.float16)
 elif colorblind_type.lower() in ['deuteranopia', 'd', 'deut']:
 sim_matrix = np.array([[1, 0, 0], [1.10104433, 0, -0.00901975], [0, 0, 1]], dtype=np.float16)
 elif colorblind_type.lower() in ['tritanopia', 't', 'tri']:
 sim_matrix = np.array([[1, 0, 0], [0, 1, 0], [-0.15773032, 1.19465634, 0]], dtype=np.float16)
 else:
 raise ValueError('{} is an unrecognized colorblindness type.'.format(colorblind_type))
 # matrix multiply
 lms_img = changeSpaceNew(lms_img, sim_matrix)
 # return back to rgb space with inverse transform.
 rgb_img = lms_to_rgb(lms_img)
 # let's save the image as a colorblind person "should" see it
 io.imsave("asColorBlind.jpg",rgb_img)

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 20/33

 # OLD: return rgb_img.astype(np.uint8)
 return rgb_img

In []: def daltonize_correct(img, colorblind_type):
 colorblind_img = simulate_colorblindness(img, colorblind_type=colorblind_type)
 # error matrix is the difference between the original img and the simulated one
 error_matrix = img - colorblind_img
 # let's save this "error" trace
 io.imsave("errorImg.jpg",error_matrix)
 # correction with linear trans. to convey info to the colorblind person
 # done by mapping to the other side of the spectrum
 correction_matrix = np.array(
 [[0.0, 0.0, 0.0],
 [0.7, 1.0, 0.0],
 [0.7, 0.0, 1.0]]
)
 # rotates this to a part of the spectrum that they can sees
 corrected_error_matrix = changeSpaceNew(error_matrix, correction_matrix)
 # let's save the highlight mask
 io.imsave("correctedErrorImg.jpg",corrected_error_matrix)
 # add the correction (highlight mask) to the image
 final = img + corrected_error_matrix
 np.set_printoptions(threshold=sys.maxsize)

 # Steps
 nImages = 7
 plt.figure(figsize=(30, 30))
 plt.subplot(1,nImages,1)
 plt.imshow(img)
 for x in range(2,nImages+1):
 img += (corrected_error_matrix / nImages)
 plt.subplot(1,nImages,x)
 plt.imshow(img)

 return final

Here is a result without data clipping:

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 21/33

In []: # load image
img2 = plt.imread("/content/drive/MyDrive/notebookImgs/crayons.png")

correct using daltonization
daltonized_img2 = daltonize_correct(img2, colorblind_type='p')

In []: plt.figure(figsize=(10, 10))
plt.imshow(daltonized_img2)

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 22/33

Commented results:
We've seen another example of daltonization, this time with a more "natural image". We've explored the modules and we understood how to "play" with types and
operations in order to remove the clipping and obtaining a cleaner result

Goal 3:

From the paper: An Improved Dynamic Daltonization for Color- Blinds (Anika Tasnim)

Department of Electrical and Computer Engineering - North South University: Dhaka, Bangladesh

An improved algorithm, proposed by that university paper, simulates protanope vision of an image (as the first one) -> then it divides the original image into two
images depending on the color perceptibility of protanope (and here we implement this part, that i couldn't found implemented online) -> the imperceptible image is
then iteratively Daltonized depending on the hue similarity of modified image and perceptible image. When the two images are different in terms of hue the final
output is generated. This allows a more natural image as output

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 23/33

Let's implement the separatePixels operation in the pipeline:

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 24/33

This module divides I into two images; Icorrect which contains pixels whose color is perceived correctly by protanope and Iincorrect which contains pixels whose
color is not perceived correctly by protanope. The algorithm works in this way:

1) In order to categorize the image two binary masks IE and IR are created. An error image E is calculated using:

ER = | R – Rp |, EG = | G – Gp |, EB = | R – Rp | , with R & G channels from original img and Rp & Gp from the colorblind simulated one.

2) Applying image binarization on E with a very low threshold the first mask IE is obtained. When a pixel in E is equal or higher than the threshold, the
corresponding pixel in IE is assigned 1 and when it is below the threshold corresponding IE is assigned 0. "We're giving weight to pixels that partecipates to the
error img"

3) For achieving the second mask every pixel of I is scanned. Whenever a pixel’s red component is higher than green and blue IR is assigned 1. When the green
or blue component is higher, IR is assigned 0. "We're giving weight to pixels that are mostly red in the original img"

4) By calculating the intersection of the two masks IE and IR the final mask Imask is obtained. "We create a mask where the two encounters. So a track of where
the problems are"

5) Icorrect is generated with a logical AND of inverse Imask and I. "AND with the inverse of the problems"

6) Iincorrect is generated with a logical AND between Imask and I. "AND with the problems"

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 25/33

In []: def separatePixels(img):
 # generate asColorBlind
 colorblind_img = simulate_colorblindness(img, colorblind_type='p').astype('uint8')

 # IN: img (original), colorblind_img (asColorBlind)

 R1 = img[:,:,0]
 G1 = img[:,:,1]
 R2 = colorblind_img[:,:,0]
 G2 = colorblind_img[:,:,1]

 # generate error img E
 E = img
 E[:,:,0] = abs(R1 - R2)
 E[:,:,1] = abs(G1 - G2)
 E[:,:,2] = abs(R1 - R2)

 IE = IR = Imask = np.zeros((np.shape(E[..., 0])))

 # obtain first mask IE with threshold th chosen (low)
 th = 35
 IE = (E[..., 0] >= th) & (E[..., 1] >= th) & (E[..., 2] >= th)

 # obtain second mask IR
 IR = (img[..., 0] > img[..., 1]) & (img[..., 0] > img[..., 2])

 # Imask = IE intersect IR
 ImaskInverse = IE ^ IR
 Imask = ~ImaskInverse

 # Iincorrect = mask logicalAND original
 Icorrect = np.zeros(np.shape(img))
 Iincorrect = np.zeros(np.shape(img))
 Icorrect[..., 0] = img[..., 0] * ImaskInverse
 Icorrect[..., 1] = img[..., 1] * ImaskInverse
 Icorrect[..., 2] = img[..., 2] * ImaskInverse

 # Icorrect = inverse(mask) logicalAND original
 Iincorrect[..., 0] = img[..., 0] * Imask
 Iincorrect[..., 1] = img[..., 1] * Imask
 Iincorrect[..., 2] = img[..., 2] * Imask

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 26/33

 return Icorrect, Iincorrect

Lets' see together some applied examples of this module

In []: # load image 1
img = cv2.imread("/content/drive/MyDrive/notebookImgs/bbb.png")
img = img[..., ::-1]

plt.figure(figsize=(20, 20))

plt.subplot(1,3,1)
plt.imshow(img.astype('uint8'))

Icorrect, Iincorrect = separatePixels(img)

plt.subplot(1,3,2)
plt.imshow(Icorrect.astype('uint8'))

plt.subplot(1,3,3)
plt.imshow(Iincorrect.astype('uint8'))

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 27/33

In []: # load image 2
img = cv2.imread("/content/drive/MyDrive/notebookImgs/ddd.jpg")
img = img[:,:, ::-1]

plt.figure(figsize=(20, 20))

plt.subplot(1,3,1)
plt.imshow(img.astype('uint8'))

Icorrect, Iincorrect = separatePixels(img)

plt.subplot(1,3,2)
plt.imshow(Icorrect.astype('uint8'))

plt.subplot(1,3,3)
plt.imshow(Iincorrect.astype('uint8'))

Out[]: <matplotlib.image.AxesImage at 0x7f226d2160a0>

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 28/33

In []: # load image 3
img = cv2.imread("/content/drive/MyDrive/notebookImgs/eee.jpg")
img = img[..., ::-1]

plt.figure(figsize=(20, 20))

plt.subplot(1,3,1)
plt.imshow(img.astype('uint8'))

Icorrect, Iincorrect = separatePixels(img)

plt.subplot(1,3,2)
plt.imshow(Icorrect.astype('uint8'))

plt.subplot(1,3,3)
plt.imshow(Iincorrect.astype('uint8'))

Commented results:
We've commented the improved algorithm for daltonization, understanding at high level how the iterative procedure can help us obtaining more "natural results".
Then, most importantly, we've implemented the second operation of the pipeline (starting from the output of the simulate_colorblindness): this function allows us to
separate the correctly seen pixels from the wrongly seen ones. We clearly see how the "bad parts" from a protanope point of view are kept in the wrongly seen
image (and, viceversa, removed in the correctly seen one)

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 29/33

Goal 4:

Do you remember, in the first Goal, the image that showed how a colorblind person should see the right one?

Well, as a "protanope", i find it exaggerated!

The problem, as i described it to who implemented the library: "as a color-blind person i'm noticing a really high difference between the "simulated" image (so
the one that should look as i see the original one); so i was asking myself how that difference can be smoothed out"

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 30/33

The solution: physiological based model

This model is based on the stage theory of human color vision and is derived from data reported in electrophysiological studies. It allows us to convey more
information when we consider the daltonization. It's not a coded simulation anymore, but a more detailed model. Instead of "just" shifting the curves corresponding
to L,S and M cones, we build a second reflected space. Thanks to this merge we are able, using complex integrals, to express the color deficiency with more
detail

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 31/33

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 32/33

15/12/22, 17:49 NotebookColorblind

file:///C:/Users/loren/Downloads/NotebookColorblind.html#Goals:-The-primary-goal-of-this-notebook-is-exploring-different-daltonizing-methods,-in-order-to-understand-the-main-concepts-behind-the-treatment-of-im… 33/33

Commented results:
We've briefly explored a more physiological way to see the daltonizing problem, that highlights how the first methods lack in representing the "severity" of the color
deficiency (counting it as maximum). Thanks to this study i've understood that i'm not actually a "protanope". I have a medium strong "protanomaly" (around
average level 0.6 of severity). So "protanopy" is a "maximum severity protanomaly"

